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Abstract: The split equality problem (SEP) has extraordinary utility and broad applicability in many areas of
applied mathematics. Many researchers studied the SEP and proposed algorithms to solve it. However, there are
only convergence results of the algorithms in their results and is no estimate on the rate of the convergence. In
this paper, we introduce three projection algorithms for solving the split equality problem (SEP), two of which
are self-adaptive. The global rate of convergence is firstly investigated. One algorithm is proved to have a global
convergence rate O(1/k) and two other algorithms have a global convergence rate O(1/k2).
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1 Introduction
The split equality problem (SFP) is firstly introduced
by Moudafi [1]. Let C ⊂ RN , Q ⊂ RM be two
nonempty closed convex sets and let A and B be J
by N and J by M real matrices, respectively. The
split equality problem in [1] is to find

x ∈ C, y ∈ Q, such that Ax = By, (1)

which allows asymmetric and partial relations be-
tween the variables x and y. The interest of the SEP is
to cover many situation, for instance in decomposition
methods for PDE’s, applications in game theory and
in intensity-modulated radiation therapy (IMRT). In
decision sciences, this allows to consider agents who
interplay only via some components of their decision
variables (see e.g. [2]). In (IMRT), this amounts to
envisage a weak coupling between the vector of doses
absorbed in all voxels and that of the radiation in-
tensity (see [3] for further details). Algorithms for
solving convex feasibility problems continue to re-
ceive great attention; see for instance [4, 5, 6] and also
[7, 8, 9, 10, 11, 12]. If J = M and B = I , then the
convex feasibility problem (1) reduces to the split fea-
sibility problem (originally introduced in Censor and
Elfving [13]) which is to find x ∈ C with Ax ∈ Q.

For solving the SEP (1), Moudafi [1] introduced
the following alternating CQ algorithm{

xk+1 = PC(xk − γkA
∗(Axk −Byk)),

yk+1 = PQ(yk + γkB
∗(Axk+1 −Byk)),

(2)

where γk ∈ (ε,min( 1
λA

, 1
λB

)− ε), λA and λB are the

spectral radius of A∗A and B∗B, respectively. The
above alternating CQ algorithm involves two projec-
tions PC and PQ and hence might be hard to be im-
plemented in the case where one of them fails to have
a closed-form expression. So, followed the ideas of
Fukushima [14, 15, 16], Moudafi [17] proposed a re-
laxed alternating CQ-algorithm which only needs pro-
jections onto half-spaces. Define the closed convex
sets C and Q as level sets:

C = {x ∈ H1 : c(x) ≤ 0},

and
Q = {y ∈ H2 : q(y) ≤ 0},

where c : H1 → R and q : H2 → R are convex
functions which are subdifferentiable on C and Q re-
spectively. The relaxed alternating CQ-algorithm is
defined by{

xk+1 = PCk
(xk − γkA

∗(Axk −Byk)),
yk+1 = PQk

(yk + γkB
∗(Axk+1 −Byk)),

where (Ck), (Qk) are two sequences of closed convex
sets defined by

Ck = {x ∈ H1 : c(xk) + ⟨ξk, x− xk⟩ ≤ 0},

where ξk ∈ ∂c(xk), and

Qk = {y ∈ H2 : q(yk) + ⟨ηk, y − yk⟩ ≤ 0},

where ηk ∈ ∂q(yk).
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By defining product space, Byrne and Moudafi
[18] presented a simultaneous iterative algorithm
which is also called projected Landweber algorithm):{

xk+1 = PC(xk − γkA
∗(Axk −Byk)),

yk+1 = PQ(yk + γkB
∗(Axk −Byk)),

(3)

where γk ∈ (0, 2
λA+λB

). Compared algorithms (2)
and (3), one can find that the alternating CQ algorithm
(2) looks like Gauss-Seidel iteration and algorithm (3)
looks like Jacobi iteration.

Recently, using Tikhonov regularization (see [19,
20]), Chen et al. [21] made a modification to the algo-
rithm (3) and used the regularization method to estab-
lish a single-step iteration:{

xk+1 = PC ((1− ϵkγk)xk − γkA
∗(Axk −Byk)) ,

yk+1 = PQ ((1− ϵkγk)yk + γkB
∗(Axk −Byk)) ,

(4)
for solving the SEP in infinite-dimensional Hilbert
spaces. Under the following assumptions on ϵk, γk:

(i) 0 < γk ≤ ϵk/(∥A∥2+∥B∥2+ ϵk)
2 for all (large

enough) k;

(ii) ϵk → 0 and γk → 0;

(iii)
∞∑
k=1

ϵkγk = ∞;

(iv) (|γk+1 − γk|+ γk|ϵk+1 − ϵk|)/(ϵk+1γk+1)
2;

they showed that the sequence generated by such al-
gorithm strongly converges to the minimum-norm so-
lution of the SEP.

Observe that in the algorithm (2), the determina-
tion of the stepsize γn depends on the operator (ma-
trix) norms ∥A∥ and ∥B∥ (or the largest eigenvalues
of ATA and BTB). This means that in order to im-
plement the alternating CQ algorithm (2), one has first
to compute (or, at least, estimate) operator norms of A
and B, which is in general not an easy work in prac-
tice.

In [22], inspired by Tseng [23] (also see [24]), the
authors proposed a self-adaptive algorithm to solve
the SEP.

Algorithm DH: Given constants σ0 > 0, β ∈ (0, 1),
θ ∈ (0, 1), ρ ∈ (0, 1). Let x0 ∈ H1 and y0 ∈ H2 be
arbitrary. For k = 0, 1, 2, . . . , compute{

uk = PC(xk − τkF (xk, yk)),
vk = PQ(yk − τkG(xk, yk)),

(5)

where γk is chosen to be the largest γ ∈

{σk, σkβ, σkβ2, . . .} satisfying

∥F (xk, yk)− F (uk, vk)∥2+∥G(xk, yk)−G(uk, vk)∥2

≤ θ2
∥xk − uk∥2 + ∥yk − vk∥2

γ2
.

(6)
Construct the half-spaces Xk and Yk the bounding hy-
perplane of which support C and Q at uk and vk, re-
spectively,

Xk :={u ∈ H1

∣∣⟨xk−τkF (xk, yk)−uk, u− uk⟩≤0},
Yk :={v ∈ H2

∣∣⟨yk −τkG(xk, yk)− vk, v− vk⟩ ≤ 0}.
Set{

xk+1 = PXk
(uk − γk(F (uk, vk)− F (xk, yk))),

yk+1 = PYk
(vk − γk(G(uk, vk)−G(xk, yk))).

(7)
If

∥F (xk+1, yk+1)− F (xk, yk)∥2

+ ∥G(xk+1, yk+1)−G(xk, yk)∥2

≤ ρ2
∥xk+1 − xk∥2 + ∥yk+1 − yk∥2

γ2k
,

then set σk = σ0; otherwise, set σk = γk. In [25], the
authors introduced a projection algorithm with a way
of selecting the stepsizes such that the implementa-
tion of the algorithm does not need any priori infor-
mation about the operator norms for solving the SEP.
The stepsize in (3) is taken by:

γk =σk min
{ ∥Axk −Byk∥2

∥A∗(Axk −Byk)∥2
,

∥Axk −Byk∥2

∥B∗(Axk −Byk)∥2
}
,

where σk ∈ (0, 1). A relaxed projection algorithm and
a viscosity are also discussed and we showed that the
sequence generated by the viscosity algorithm con-
verges in norm to the solution of the SEP.

In this paper, we introduce three projection al-
gorithms for solving the SEP, inspired by Beck and
Teboulle’s iterative shrinkage-thresholding algorithm
for linear inverse problem [26]. The first algorithm
is self-adaptive, the sequences generated by which are
proved to converge to a solution of the SEP. Two other
algorithms are fast and proved to have a global conver-
gence rate O(1/k2). Furthermore, the third algorithm
accelerates the first algorithm.

The rest of this paper is organized as follows. In
the next section, some useful facts and tools are given.
A self-adaptive algorithm is proposed and its global
rate of convergence is presented. in section 3. In
section 4, we consider two fast algorithms and obtain
global rate of convergence. A numerical example is
given to illustrate the efficiency of different algorithms
in section 5.
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2 Preliminaries
Throughout this paper, assume the split equality prob-
lem (1) is consistent and denote by Γ the solution of
(1), i.e.,

Γ = {x ∈ C, y ∈ Q : Ax = By},

then Γ is closed, convex and nonempty.
Let I = M +N , S = C×Q in RN ×RM = RI .

Define

G = [A,−B], u =

[
x
y

]
. (8)

The original problem can now be reformulated as find-
ing u ∈ S with Gw = 0, or, more generally, mini-
mizing the function ∥Gu∥ over u ∈ S which can be
written as the following minimization problem:

min
u∈RI

{F (u) ≡ f(u) + ιS(u)},

where f(u) = 1
2∥Gu∥2 and ιS(u) is a indicator func-

tion of the set S defined by

ιS(u) =

{
0, u ∈ S
+∞, otherwise.

It is easy to verified that L(f) = ∥∇f∥ = ∥A∥2 +
∥B∥2.

For any τ > 0, consider the following quadratic
approximation of Qτ (u) at a given point v:

Qτ (u, v) := f(v)+⟨u−v,∇f(v)⟩+τ

2
∥u−v∥2+ιS(u),

which admits a unique minimizer

pτ (v) := argmin{Qτ (u, v) : u ∈ RI}. (9)

Simple algebra shows that (ignoring constant terms in
v)

pτ (v) = argmin
u

{
ιS(u) +

τ

2

∥∥∥∥u−
(
v − 1

τ
∇f(v)

)∥∥∥∥2
}

= PS(v −
1

τ
∇f(v)).

(10)
The following lemma is well-known and funda-

mental property for a smooth function in the class
C1,1; e.g., [27, 28].

Lemma 1 Let f : Rn → R be a continuously differ-
entiable function with Lipschitz continuous gradient
and Lipschitz constant L(f). Then, for any L > L(f),

f(x) ≤ f(y) + ⟨x− y,∇f(y)⟩+ L

2
∥x− y∥2,

for every x, y ∈ Rn.

The following lemma is key for the proof of the
main result.

Lemma 2 Let y ∈ Rn and τ > 0 be such that

F (pτ (y)) ≤ Qτ (pτ (y), y). (11)

Then for any x ∈ Rn,

F (x)−F (pτ (y)) ≥
τ

2
∥pτ (y)−y∥2+τ⟨y−x, pτ (y)−y⟩.

Proof. See the appendix.

Remark 3 Note that from Lemma 1, it follows that if
τ ≥ L(f), then the condition (11) is always satisfied
for pτ (v).

3 A self-adaptive algorithm
Although Byrne and Moudafi [18] proved the conver-
gence of the CQ algorithm (3), there was no estimate
of the rate of convergence. Here we rewrite the CQ
algorithm (3) and consider the rate of the convergence
of CQ algorithm together with a self-adaptive algo-
rithm.

Algorithm 4 Let L1 ≥ L(f) be a fixed constant and
given τk ∈ (L(f), L1). Let x1 be arbitrary. For k =
1, 2, . . . , compute

uk+1 = PS(uk −
1

τk
∇f(uk)). (12)

Using (8) and expressing (12) in terms of x and y,
we obtain the following equivalent form of Algorithm
4:

Algorithm 4* Let L1 ≥ L(f) be a fixed constant
and given τk ∈ (L(f), L1). Let x1 be arbitrary. For
k = 1, 2, . . . , compute{

xk+1 = PC(xk − 1
τk
AT (Axk −Byk)),

yk+1 = PQ(yk +
1
τk
BT (Axk −Byk)).

(13)

It should be noted that in the above algorithm
(13), we take τk ≥ 1

∥A∥2+∥B∥2 , instead of τk ≥
2

∥A∥2+∥B∥2 (as in Byrne and Moudafi’s algorithm)
which is restricted to a smaller range.

Next, we propose a self-adaptive algorithm which
solve the SEP (1) without prior knowledge of spec-
tral radius of the matrices ATA and BTB. The se-
quence generated by the algorithm converges to a so-
lution of the SEP and the global rate of convergence
is presented.
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Algorithm 5 Given γ > 0 and η > 1. Let u1 be arbi-
trary. For k = 1, 2, . . . , find the smallest nonnegative
integer mk such that τk = γηmk and

uk+1 = PS(uk −
1

τk
∇f(uk)), (14)

which satisfies

f(uk+1)− f(uk) + ⟨∇f(uk), uk − uk+1⟩

≤ τk
2
∥uk − uk+1∥2.

(15)

Using (8) and expressing (14) and (15) in terms
of x and y, we obtain the following equivalent form
of Algorithm 5:

Algorithm 5* Given γ > 0 and η > 1. Let (x1, y1)
be arbitrary. For k = 1, 2, . . . , find the smallest non-
negative integer mk such that τk = γηmk and{

xk+1 = PC(xk − 1
τk
AT (Axk −Byk)),

yk+1 = PQ(yk +
1
τk
BT (Axk −Byk)),

(16)

which satisfies

1

2
∥Axk+1 −Byk+1∥2 −

1

2
∥Axk −Byk∥2

+AT (Axk −Byk)(xk − xk+1)

+BT (Byk −Axk)(yk − yk+1)

≤ τk
2
∥xk − xk+1∥2 +

τk
2
∥yk − yk+1∥2.

(17)

Remark 6 Note that the sequence of function values
{f(uk)} produced by the algorithm 5 is nonincreas-
ing. Indeed, for every n ≥ 1,

f(uk+1) ≤ Qτk(uk+1, uk) ≤ Qτk(uk, uk) = f(xk),
(18)

where the first inequality comes from (15), and the
second inequality follows from (9). τn in (18) is cho-
sen by the backtracking rule (15).

Lemma 7

βL(f) ≤ τk ≤ αL(f). (19)

where α = L1
L(f) , β = 1 in Algorithm 4 and α =

η, β = γ
L(f) in Algorithm 5.

Proof: It is easy to verify (19) for Algorithm 4. By
η > 1 and the choice of τk, we get τk ≥ γ. From
Lemma 1, it follows that inequality (17) is satisfied
for τk ≥ L(f), where L(f) is the Lipschitz constant
of ∇f . So, for Algorithm 5 one has τk ≤ ηL(f) for
every k ≥ 1. ⊓⊔

Theorem 8 Let {xk, yk} be a sequence generated by
Algorithm 4* and 5*. Then the sequence {xk, yk}
converges to a solution of the SEP (1), and further-
more for any k ≥ 1 it holds that

∥Axk −Byk∥2

≤ η(∥A∥2 + ∥B∥2)(∥x0 − x∗∥2 + ∥y0 − y∗∥2)
k

,

∀(x∗, y∗) ∈ Γ.
(20)

Proof: Let un = (xn, yn) and u∗ = (x∗, y∗). Invok-
ing Lemma 2 with x = u∗, y = un, and τ = τn, we
obtain

− 2

τk
f(un+1)

≥ ∥un+1 − un∥2 + 2⟨un − u∗, un+1 − un⟩
= ∥un+1 − u∗∥2 − ∥un − u∗∥2,

which combined with (19) and the fact that f(u∗) = 0
and f(un+1) ≥ 0 yields

2

ηL(f)
(f(u∗)−f(un+1)) ≥ ∥un+1−u∗∥2−∥un−u∗∥2,

(21)
which implies

∥un+1 − u∗∥ ≤ ∥un − u∗∥.

It follows that limk→∞ ∥uk − u∗∥ exists and thus
limk→∞ ∥xk−x∗∥ and limk→∞ ∥yk−y∗∥ exist. Sum-
ming the inequality (21) over n = 0, 1, . . . , k−1 gives

− 2

ηL(f)

k−1∑
n=0

f(un+1) ≥ ∥uk − u∗∥2 − ∥u0 − u∗∥2.

(22)
Invoking Lemma 2 one more time with x = y = un
and τ = τn yields

2

τn
(f(un)− f(un+1)) ≥ ∥un − un+1∥2. (23)

Since τn ≥ γ (see (19)) and f(un) − f(un+1) ≥ 0
(see (18)), it follows that

2

γ
(f(un)− f(un+1)) ≥ ∥un − un+1∥2.

Multiplying the last inequality by n and summing over
n = 0, . . . , k − 1, we obtain

2

γ

k−1∑
n=0

(nf(un)− (n+ 1)f(un+1) + f(un+1))

≥
k−1∑
n=0

n∥un − un+1∥2,
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which simplifies to

2

γ

(
−kf(uk) +

k−1∑
n=0

f(un+1)

)
≥

k−1∑
n=0

n∥un−un+1∥2.

(24)
Adding (22) and (24) times γ

ηL(f) , we get

− 2k

ηL(f)
f(uk)

≥ ∥uk − u∗∥2 + γ

ηL(f)

k−1∑
n=0

n∥un − un+1∥2

− ∥u0 − u∗∥2,

and hence it follows that

f(uk) ≤
ηL(f)∥u0 − u∗∥2

2k
, ∀u∗ ∈ Γ, (25)

which yields (20) and

lim
k→∞

f(uk) = 0, (26)

i.e.,
lim
k→∞

∥Axk −Byk∥ = 0. (27)

Using (23) and (26) and expressing them in xk and yk,
we obtain

lim
k→∞

∥xk − xk+1∥ = 0, lim
k→∞

∥yk − yk+1∥ = 0.

Let (x̂, ŷ) ∈ ωw(xk, yk), then there exist two sub-
sequences of (xk) and (yk) (again labeled (xk) and
(yk)) which converge weakly to x̂ and ŷ. Note that
the two equalities in (13) can be rewritten as{

τk(xk − xk+1)−AT (Axk −Byk) ∈ NC(xk+1),
τk(yk − yk+1) +BT (Axk −Byk) ∈ NQ(xk+1),

(28)
where NC and NQ is the normal cone to the convex
sets C and Q, respectively. The graphs of the maxi-
mal monotone operators NC , NQ are weakly-strongly
closed and by passing to the limit in the last inclu-
sions, we obtain that

x̂ ∈ C and ŷ ∈ Q.

Furthermore, the weak convergence of (Axk − Byk)
to Ax̂ − Bŷ and lower semicontinuity of the squared
norm imply

∥Ax̂−Bŷ∥ ≤ lim inf
k→∞

∥Axk −Byk∥ = 0,

where (27) is used. Hence (x̂, ŷ) ∈ Γ.

To show the uniqueness of the weak cluster
points, we will use the same strick as in the celebrated
Opial Lemma. Now, by setting

Γk(x
∗, y∗) = ∥xk − x∗∥2 + ∥yk − y∗∥2,

the existence of limk→∞ ∥xk−x∗∥ and limk→∞ ∥yk−
y∗∥ implies the existence of limk→∞ Γk(x

∗, y∗),
which is denoted by l(x̂, ŷ). Indeed, let (x̄, ȳ) be other
weak cluster point of (xk, yk). By passing to the limit
in the relation

Γk(x̂, ŷ) = Γk(x̄, ȳ) + ∥x̂− x̄∥2 + ∥ŷ − ȳ∥2

+ 2⟨xk − x̄, x̄− x̂⟩+ 2⟨yk − ȳ, ȳ − ŷ⟩,

we obtain

l(x̂, ŷ) = l(x̄, ȳ) + ∥x̂− x̄∥2 + ∥ŷ − ȳ∥2.

Reversing the role of (x̂, ŷ) and (x̄, ȳ), we also have

l(x̄, ȳ) = l(x̂, ŷ) + ∥x̂− x̄∥2 + ∥ŷ − ȳ∥2.

By adding the two last equalities, we obtain

∥x̂− x̄∥2 + ∥ŷ − ȳ∥2 = 0.

Hence (x̂, ŷ) = (x̄, ȳ), this implies that the whole se-
quence (xk, yk) converges to a solution of the SEP (1),
which completes the proof. ⊓⊔

4 Two fast algorithms

In this section, we introduce two fast projection al-
gorithms. The global rate of convergence of the two
algorithms are investigated and the sequence {f(uk)}
has the better complexity rate O(1/k2).

Firstly, we present an algorithm which accelerates
the algorithm 4.

Algorithm 9 Let L1 ≥ L(f) be a fixed constant and
given τk ∈ (L(f), L1). Let u0 be arbitrary and set
v1 = u0, t1 = 1. For k = 1, 2, . . . , compute

uk = PS(vk −
1

τk
∇f(vk)), (29)

tk+1 =
1 +

√
1 + 4t2k

2
. (30)

Set

vk+1 = uk +

(
tk − 1

tk+1

)
(uk − uk−1). (31)
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Using (8) and expressing (29) and (31) in terms
of x and y, we obtain the following equivalent form
of Algorithm 9:

Algorithm 9* Let L1 ≥ L(p) be a fixed constant and
given τk ∈ (L(p), L1). Let (x0, y0) be arbitrary and
set (s1, w1) = (x0, y0), t1 = 1. For k = 1, 2, . . . ,
compute

xk = PC(sk −
1

τk
AT (Ask −Bwk)),

yk = PQ(wk +
1

τk
BT (Ask −Bwk)),

(32)

tk+1 =
1 +

√
1 + 4t2k

2
. (33)

Set 
sk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1),

wk+1 = yk +

(
tk − 1

tk+1

)
(yk − yk−1).

(34)

The following algorithm is self-adaptive and ac-
celerates Algorithm 5.

Algorithm 10 Given γ > 0 and η > 1. Let u0 be ar-
bitrary and set v1 = u0, t1 = 1. For k = 1, 2, . . . ,
find the smallest nonnegative integer mk such that
τk = γηmk and

uk = PS(vk −
1

τk
∇f(vk)), (35)

which satisfies

f(uk)−f(vk)+ ⟨∇f(vk), vk−uk⟩ ≤
τk
2
∥vk−uk∥2.

(36)
Compute

tk+1 =
1 +

√
1 + 4t2k

2
, (37)

and

vk+1 = uk +

(
tk − 1

tk+1

)
(uk − uk−1). (38)

Using (8) and expressing (35), (36) and (38) in
terms of x and y, we obtain the following equivalent
form of Algorithm 10:

Algorithm 10* Given γ > 0 and η > 1. Let (x0, y0)
be arbitrary and set (s1, w1) = (x0, y0), t1 = 1. For

k = 1, 2, . . . , find the smallest nonnegative integer
mk such that τk = γηmk and

xk = PC(sk −
1

τk
AT (Ask −Bwk)),

yk = PQ(wk +
1

τk
BT (Ask −Bwk)),

(39)

which satisfies

1

2
∥Axk −Byk∥2 −

1

2
∥Ask −Bwk∥2

+AT (Ask −Bwk)(sk − xk)

+BT (Bwk −Ask)(wk − yk)

≤ τk
2
∥xk − sk∥2 +

τk
2
∥yk − wk∥2.

(40)

Compute

tk+1 =
1 +

√
1 + 4t2k

2
, (41)

and
sk+1 = xk +

(
tk − 1

tk+1

)
(xk − xk−1),

wk+1 = yk +

(
tk − 1

tk+1

)
(yk − yk−1).

(42)

Lemma 11

βL(f) ≤ τk ≤ αL(f). (43)

where α = L1
L(f) , β = 1 in Algorithm 9 and α =

η, β = γ
L(f) in Algorithm 10.

Proof: Following the line of Lemma 7, one can easily
show (43) for Algorithm 9 and 10. ⊓⊔

The next result provides the key recursive relation
for the sequence {f(uk)}.

Lemma 12 The sequence {uk} generated via Algo-
rithm 9 or Algorithm 10 satisfies, for every k ≥ 1

2

τk
t2krk −

2

τk+1
t2k+1rk+1 ≥ ∥qk+1∥2 − ∥qk∥2,

where rk := f(uk), qk := tkuk − (tk − 1)uk−1 − u∗

with u∗ = (x∗, y∗) ∈ Γ.

Proof. See Appendix. ⊓⊔
We also need the following trivial facts.

Lemma 13 Let {ak, bk} be positive sequences of re-
als satisfying

ak−ak+1 ≥ bk+1−bk, ∀k ≥ 1, with a1+b1 ≤ c, c > 0.

Then ak ≤ c for every k ≥ 1.
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Lemma 14 The positive sequence {tk} generated in
(33) with t1 = 1 satisfies tk ≥ (k+1)/2 for all k ≥ 1.

Theorem 15 Let {un} be generated by Algorithm 9
or Algorithm 10. Then for any k ≥ 1

f(uk) ≤
2αL(f)∥u0 − u∗∥2

(k + 1)2
, ∀u∗ ∈ Γ. (44)

Proof: Let us define the quantities

ak :=
2

τk
t2krk, bk := ∥qk∥2,

c := ∥v1 − u∗∥2 = ∥u0 − u∗∥2,

and recall (cf. Lemma 12) that rk := f(uk). Then, by
Lemma 12 we have for every n ≥ 1

ak − ak+1 ≥ bk+1 − bk,

and hence assuming that a1 + b1 ≤ c holds true, in-
voking Lemma 13, we obtain that

2

τk
t2krk ≤ ∥u0 − u∗∥2,

which combined with tk ≥ (k+1)/2 (by Lemma 14)
yields

rk ≤ 2τk∥u0 − u∗∥2

(k + 1)2
.

Utilizing the upper bound on τk given in (43), the de-
sired result (44) follows. Thus, all that remains is to
prove the validity of the relation a1 + b1 ≤ c. Since
t1 = 1, and using the definition of qk given in Lemma
12, we have here

a1 =
2

τ1
t21r1 =

2

τ1
r1, b1 = ∥q1∥2 = ∥u1 − u∗∥2.

Applying Lemma 2 to the points x := u∗, y := v1
with τ = τ1, we get

f(u∗)−f(x1) ≥
τ1
2
∥u1−v1∥2+τ1⟨v1−u∗, u1−v1⟩.

(45)
Thus, using f(u∗) = 0, we obtain

−f(u1) ≥
τ1
2
∥u1 − v1∥2 + τ1⟨v1 − u∗, u1 − v1⟩

=
τ1
2
{∥u1 − u∗∥2 − ∥v1 − u∗∥2}.

Consequently,

2

τ1
r1 ≤ ∥v1 − u∗∥2 − ∥u1 − u∗∥2,

that is, a1 + b1 ≤ c holds true. ⊓⊔

Remark 16 From Theorem 15, we have, for (xk, yk)
generated by algorithms 9* and 10*,

∥Axk −Byk∥2

≤ 4α(∥A∥2 + ∥B∥2)(∥x0 − x∗∥2 + ∥y0 − y∗∥2)
(k + 1)2

,

∀(x∗, y∗) ∈ Γ.

Remark 17 Different from Theorem 8, there is not
convergence of the sequence {un} in Theorem 15 for
algorithms 9 and 10. Combettes and Pesquet [29]
concluded that the convergence of the sequence {un}
generated by Algorithm 9 or Algorithm 10 is no longer
guaranteed in general.

5 Preliminary computational results

In this section, we present some preliminary numeri-
cal results. We apply four algorithms to solve an ex-
ample, and compare the numerical results.

For convenience, we denote the vector with all el-
ements 0 by e0, and the vector with all elements 1 by
e1 in what follows. In the numerical results listed in
the following tables, ’Iter.’ and ’Sec.’ denoted the
number of iterations and the cpu time in seconds, re-
spectively.

Example 18 The SEP with A = (aij)J×N B =
(bij)J×M , C = {x ∈ RN |∥x∥ ≤ 0.25}, Q = {y ∈
RM | e0 ≤ y ≤ U}, where aij ∈ [0, 1], bij ∈ [0, 1]
and U ∈ [e1, 2e1] are all generated randomly. In the
implementation, we took ∥Ax − By∥ < ε = 10−4

as the stopping criterion. Take the initial value x =
(0, 0, . . . , 0)T ∈ RN , y = (1, 1, . . . , 1)T ∈ RM .

We tested the algorithms 4, 5, 9 and 10 with dif-
ferent M,N and J . In algorithms 4 and 9, since a
smaller τn was more efficient than a larger one, we
chose τn = L(f) in the experiment. We took γ = 9,
η = 4 for algorithms 5 and 10. For comparison, the
same random values were taken in each test for four
algorithms. The numerical results were listed in ta-
ble 1, from which we could observe the efficiency of
the algorithms 4,5, 9 and 10, both from the points of
view of number of iterations and cpu time. We found
that the algorithm 9, in fact, accelerated the algorithm
4 and the algorithm 10 accelerated the algorithm 5
at most cases except several special cases, which de-
serves further research.
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Table 1: Computational results for the example with
different J,M,N .

J 10 30 50
N = 10 Alg 4 Iter. 2394 12030 3653

Sec. 0.125 1.030 0.530
Alg 5 InIt. 946 2884 3273

Iter. 941 2201 1507
Sec. 0.140 0.499 0.936

M = 20 Alg 8 Iter. 277 591 387
Sec. 0.016 0.078 0.078

Alg 9 InIt. 287 792 563
Iter. 193 333 227
Sec. 0.094 0.140 0.187

N = 30 Alg 4 Iter. 737 5788 83945
Sec. 0.062 0.827 19.017

Alg 5 InIt. 158 4683 18785
Iter. 153 2015 9308
Sec. 0.047 1.108 7.207

M = 30 Alg 8 Iter. 216 864 1414
Sec. 0.031 0.140 0.374

Alg 9 InIt. 503 703 6688
Iter. 211 304 1958
Sec. 0.109 0.187 2.512

N = 100 Alg 4 Iter. 846 2553 7746
Sec. 0.125 0.406 1.030

Alg 5 InIt. 183 791 7363
Iter. 111 296 2278
Sec. 0.078 0.281 2.777

M = 50 Alg 8 Iter. 221 473 904
Sec. 0.062 0.094 0.125

Alg 9 InIt. 223 2895 1580
Iter. 88 830 451
Sec. 0.062 1.014 0.655

Appendix

The proof of Lemma 2. From (11), we have

p(x)− p(Fτ (y)) ≥ p(x)−Rτ (Fτ (y), y). (46)

Now, from the fact that p is convex, it follows

p(x) ≥ p(y) + ⟨x− y,∇p(y)⟩. (47)

On the other hand, by the definition of Rτ (x, y), one
has

Rτ (Fτ (y), y) = p(y) + ⟨Fτ (y)− y,∇p(y)⟩

+
τ

2
∥Fτ (y)− y∥2.

(48)

Therefore, using (46)-(48), it follows that

p(x)− p(Fτ (y))

≥ −τ

2
∥Fτ (y)− y∥2 + ⟨x− Fτ (y),∇p(y)⟩

= −τ

2
∥Fτ (y)− y∥2 + τ⟨x− Fτ (y), y − Fτ (y)⟩

=
τ

2
∥Fτ (y)− y∥2 + τ⟨y − x, Fτ (y)− y⟩,

where in the first equality above we used (10). ⊓⊔
The proof of Lemma 12. First we apply Lemma 2 at
the points (x := xn, y := yn+1) with τ = τn+1, and
likewise at the points (x := x∗, y := yn+1), to get

2τ−1
n+1(vn − vn+1)

≥ ∥xn+1 − yn+1∥2 + 2⟨xn+1 − yn+1, yn+1 − xn⟩,
− 2τ−1

n+1vn+1

≥ ∥xn+1 − yn+1∥2 + 2⟨xn+1 − yn+1, yn+1 − x∗⟩,

where we used the fact that p(x∗) = 0 and xn+1 =
Fτn+1(yn+1). To get a relation between vn and vn+1,
we multiply the first inequality above by (tn+1 − 1)
and add it to the second inequality:

2

τn+1
((tn+1 − 1)vn − tn+1vn+1)

≥ tn+1∥xn+1 − yn+1∥2

+ 2⟨xn+1 − yn+1, tn+1yn+1 − (tn+1 − 1)xn − x∗⟩.

Multiplying the last inequality by tn+1 and using the
relation t2n = t2n+1− tn+1 which holds thanks to (33),
we obtain

2

τn+1
(t2nvn − t2n+1vn+1)

≥ ∥tn+1(xn+1 − yn+1)∥2

+2tn+1

⟨
xn+1 − yn+1,

tn+1yn+1 − (tn+1 − 1)xn − x∗
⟩
.

Applying the usual Pythagoras relation

∥b− a∥2 + 2⟨b− a, a− c⟩ = ∥b− c∥2 − ∥a− c∥2,

to the right-hand side of the last inequality with

a := tn+1yn+1, b := tn+1xn+1,

c := (tn+1 − 1)xn + x∗,

we thus get

2

τn+1
(t2nvn − t2n+1vn+1)

≥ ∥tn+1xn+1 − (tn+1 − 1)xn − x∗∥2

− ∥tn+1yn+1 − (tn+1 − 1)xn − x∗∥2.
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Therefore, with yn+1 (cf. (31)) and un defined by

tn+1yn+1 = tn+1xn + (tn − 1)(xn − xn−1),

and
un = tnxn − (tn − 1)xn−1 − x∗,

it follows that

2

τn+1
(t2nvn − t2n+1vn+1) ≥ ∥un+1∥2 − ∥un∥2,

which combined with the inequality τn+1 ≥ τn yields

2

τn
t2nvn − 2

τn+1
t2n+1vn+1 ≥ ∥un+1∥2 − ∥un∥2.

The proof is completed. ⊓⊔
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